Interactive Filtering
InteractiveFilteringRecommender
Source code in engines/contentFilterEngine/special_techniques/interactive_filtering.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
|
__init__(base_recommender)
Initialize the InteractiveFilteringRecommender with a base recommender.
Parameters: - base_recommender (Any): An instance of a base recommender (e.g., LSA, LDA).
Source code in engines/contentFilterEngine/special_techniques/interactive_filtering.py
10 11 12 13 14 15 16 17 18 19 20 |
|
collect_feedback(user_id, item_id, feedback_score)
Collect feedback from the user for a specific item.
Parameters: - user_id (int): The ID of the user. - item_id (int): The ID of the item. - feedback_score (float): The feedback score (e.g., 1.0 for positive, -1.0 for negative).
Source code in engines/contentFilterEngine/special_techniques/interactive_filtering.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
|
recommend(user_id, query, top_n=10)
Generate top-N item recommendations for a user, considering their feedback.
Parameters: - user_id (int): The ID of the user. - query (str): The query text for generating recommendations. - top_n (int): Number of top recommendations to return.
Returns: - List[int]: List of recommended item IDs.
Source code in engines/contentFilterEngine/special_techniques/interactive_filtering.py
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
|
update_recommender(user_id, item_id, feedback_score)
Update the base recommender system based on user feedback.
Parameters: - user_id (int): The ID of the user. - item_id (int): The ID of the item. - feedback_score (float): The feedback score.
Source code in engines/contentFilterEngine/special_techniques/interactive_filtering.py
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
|