Skip to content

Bayesian

BAYESIAN

Source code in engines/contentFilterEngine/probabilistic_statistical_methods/bayesian.py
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
class BAYESIAN:
    def __init__(self):
        """
        Initialize the Bayesian classifier using Multinomial Naive Bayes.
        """
        self.vectorizer = CountVectorizer(stop_words='english')
        self.model = MultinomialNB()
        logger.info("Bayesian classifier initialized.")

    def fit(self, documents: List[str], labels: List[int]):
        """
        Fit the Bayesian classifier on the provided documents and labels.

        Parameters:
        - documents (List[str]): List of documents to train the model.
        - labels (List[int]): Corresponding labels for the documents.
        """
        logger.info("Fitting Bayesian classifier on documents.")
        count_matrix = self.vectorizer.fit_transform(documents)
        self.model.fit(count_matrix, labels)
        logger.info("Bayesian classifier training completed.")

    def predict(self, query: str) -> int:
        """
        Predict the label for a given query.

        Parameters:
        - query (str): The query text to classify.

        Returns:
        - int: Predicted label.
        """
        logger.info("Predicting label using Bayesian classifier.")
        query_vec = self.vectorizer.transform([query])
        prediction = self.model.predict(query_vec)[0]
        logger.info(f"Predicted label: {prediction}")
        return prediction

    def recommend(self, query: str, top_n: int = 10) -> List[int]:
        """
        Recommend items based on the Bayesian classifier's prediction.

        Parameters:
        - query (str): The query text for which to generate recommendations.
        - top_n (int): Number of top recommendations to return.

        Returns:
        - List[int]: List of recommended item indices.
        """
        logger.info("Generating recommendations using Bayesian classifier.")
        predicted_label = self.predict(query)
        # Example: Recommend items with the same label
        # This requires access to labeled items; here we return an empty list as a placeholder
        recommendations = []  # Implement logic based on the application
        logger.info(f"Top {top_n} recommendations generated using Bayesian classifier.")
        return recommendations[:top_n]

__init__()

Initialize the Bayesian classifier using Multinomial Naive Bayes.

Source code in engines/contentFilterEngine/probabilistic_statistical_methods/bayesian.py
11
12
13
14
15
16
17
def __init__(self):
    """
    Initialize the Bayesian classifier using Multinomial Naive Bayes.
    """
    self.vectorizer = CountVectorizer(stop_words='english')
    self.model = MultinomialNB()
    logger.info("Bayesian classifier initialized.")

fit(documents, labels)

Fit the Bayesian classifier on the provided documents and labels.

Parameters: - documents (List[str]): List of documents to train the model. - labels (List[int]): Corresponding labels for the documents.

Source code in engines/contentFilterEngine/probabilistic_statistical_methods/bayesian.py
19
20
21
22
23
24
25
26
27
28
29
30
def fit(self, documents: List[str], labels: List[int]):
    """
    Fit the Bayesian classifier on the provided documents and labels.

    Parameters:
    - documents (List[str]): List of documents to train the model.
    - labels (List[int]): Corresponding labels for the documents.
    """
    logger.info("Fitting Bayesian classifier on documents.")
    count_matrix = self.vectorizer.fit_transform(documents)
    self.model.fit(count_matrix, labels)
    logger.info("Bayesian classifier training completed.")

predict(query)

Predict the label for a given query.

Parameters: - query (str): The query text to classify.

Returns: - int: Predicted label.

Source code in engines/contentFilterEngine/probabilistic_statistical_methods/bayesian.py
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
def predict(self, query: str) -> int:
    """
    Predict the label for a given query.

    Parameters:
    - query (str): The query text to classify.

    Returns:
    - int: Predicted label.
    """
    logger.info("Predicting label using Bayesian classifier.")
    query_vec = self.vectorizer.transform([query])
    prediction = self.model.predict(query_vec)[0]
    logger.info(f"Predicted label: {prediction}")
    return prediction

recommend(query, top_n=10)

Recommend items based on the Bayesian classifier's prediction.

Parameters: - query (str): The query text for which to generate recommendations. - top_n (int): Number of top recommendations to return.

Returns: - List[int]: List of recommended item indices.

Source code in engines/contentFilterEngine/probabilistic_statistical_methods/bayesian.py
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
def recommend(self, query: str, top_n: int = 10) -> List[int]:
    """
    Recommend items based on the Bayesian classifier's prediction.

    Parameters:
    - query (str): The query text for which to generate recommendations.
    - top_n (int): Number of top recommendations to return.

    Returns:
    - List[int]: List of recommended item indices.
    """
    logger.info("Generating recommendations using Bayesian classifier.")
    predicted_label = self.predict(query)
    # Example: Recommend items with the same label
    # This requires access to labeled items; here we return an empty list as a placeholder
    recommendations = []  # Implement logic based on the application
    logger.info(f"Top {top_n} recommendations generated using Bayesian classifier.")
    return recommendations[:top_n]