Item Profiling
ItemProfilingRecommender
A recommender system that builds and maintains detailed item profiles for context-aware recommendations.
This recommender system creates comprehensive profiles for items by analyzing their features, usage patterns, and performance across different contexts. It uses these profiles to make more accurate recommendations based on contextual similarities.
Attributes:
Name | Type | Description |
---|---|---|
item_profiles |
Dict[int, Dict]
|
Detailed profiles for each item containing: - Static features (inherent item characteristics) - Dynamic features (usage patterns, ratings) - Contextual performance metrics |
context_performance |
Dict[int, Dict]
|
Performance metrics for items in different contexts |
feature_importance |
Dict[str, float]
|
Learned importance of different features |
Methods:
Name | Description |
---|---|
build_profile |
Creates or updates an item's profile |
update_context_performance |
Updates item performance metrics for specific contexts |
get_context_similarity |
Calculates similarity between contexts |
recommend |
Generates recommendations using item profiles and current context |
Example
profiler = ItemProfilingRecommender() profiler.build_profile(item_id=123, features={...}, context_data={...}) recommendations = profiler.recommend(user_id=456, context={"time": "evening"})
Source code in engines/contentFilterEngine/context_personalization/item_profiling.py
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
|
__init__()
Initialize the item profiling recommender.
Source code in engines/contentFilterEngine/context_personalization/item_profiling.py
34 35 36 37 38 |
|
fit(data, item_features)
Train the recommender system by building item profiles.
Parameters: - data (dict): The data used for training the model, containing user interactions. - item_features (dict): A dictionary mapping item IDs to their features.
Source code in engines/contentFilterEngine/context_personalization/item_profiling.py
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
|
recommend(query, top_n=10)
Recommend items based on the similarity of the query to the documents.
Parameters: - query (str): The query text for which to generate recommendations. - top_n (int): Number of top recommendations to return.
Returns: - List[int]: List of recommended item indices.
Source code in engines/contentFilterEngine/context_personalization/item_profiling.py
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
|